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1. Introduction

The straight skeleton is a skeletal structure of a polygon P , similar to the Voronoi
diagram. It was introduced to computational geometry almost two decades ago by
Aichholzer et al.,1 and its definition is based on a so-called wavefront propagation
process, see Fig. 1: Each edge of P emits a wavefront edge that moves towards
the interior of P at unit speed in a self-parallel manner. The polygons formed by
these wavefront edges at any given time t ≥ 0 are the wavefront, denoted by WP (t),
and take the form of a mitered offset of P . Over time, the wavefront undergoes
two different kinds of topological changes, so-called events, due to self-interference:
roughly speaking, an edge event happens when a wavefront edge collapses, and
a split event happens when the wavefront splits into parts. The straight skeleton
S(P ) of P is then defined as the geometric graph whose edges are the traces of the
vertices of WP . Similar to Voronoi diagrams and the medial axis, straight skeletons
have become a versatile tool for applications in various domains of science and
industry.2

The weighted straight skeleton, where wavefront edges do not necessarily move at
unit speed, was first mentioned by Aichholzer and Aurenhammer3 and Eppstein and
Erickson4 and has since been used in a variety of different applications.5–8 Weighted
straight skeletons, with both positive and negative weights, also constitute a theo-
retical tool to generalize straight skeletons to 3D.9 Even though weighted straight
skeletons have already been applied in both theory and practice, their properties
have been investigated only recently. Biedl et al.10 showed that basic properties of
unweighted straight skeletons do not carry over to weighted straight skeletons in
general. They also proposed solutions for an ambiguity in the definition of straight
skeletons caused by certain edge events. This ambiguity was first mentioned by
Kelly and Wonka7 and Huber.2

In this paper, we discuss another open problem in the definition of weighted
straight skeletons caused by split events. In general, an event happens due to a
topological change in the wavefront and the event handling was so far guided by

Fig. 1. The straight skeleton S(P ) (blue) of a polygon P (bold) is defined as the traces of
wavefront vertices over time. Instances of the wavefront WP (t) at different times t are shown in
gray (color online).



1st Reading

April 12, 2017 8:25 110-IJCGA 1660005

Planar Matchings for Weighted Straight Skeletons 213

one fundamental principle: Between events, the wavefront is a planar collection of
wavefront polygons. This is easily achieved when handling edge events and “simple”
split events where at most four edges are in the wavefront afterwards. (Biedl et al.10

only studied polygons where split events were simple.) However, is it always possible
to handle multiple simultaneous, co-located split events in a fashion that respects
this fundamental principle?

We will show that it is necessary to weaken the requirement of strict planarity
in the fundamental principle. After that, we can answer the question to the affir-
mative, that is, we show how to safely define weighted straight skeletons in the
presence of multiple simultaneous, co-located split events. (Note that due to the
discontinuous character of straight skeletons, it is not possible to tackle this problem
by means of simulation of simplicity.4) We first rephrase this problem as a planar
matching problem of directed pseudo-lines and show how to transform the planar
matching problem into a stable roommates problem. For the main result, we prove
that our particular stable roommates problem always possesses a solution. Such a
solution tells us how to do the event handling of the wavefront in order to maintain
planarity.

1.1. Stable roommates problems

The stable marriage problem was proposed over 50 years ago by Gale and Shapley11

and concerns finding a pairing — say, between a set of n men and a set of n women —
such that no pair of a man and a woman would prefer each other to their respective
matching partners. Algorithms for solving this problem have found many real-world
applications, including in economics and in college admission. Many variants, e.g.,
with restrictions on the preference lists, have been studied since (see, for example,
Fleiner et al.12 and the references therein).

In the stable marriage problem, pairings are possible only between items that
are in different parts of the input. A natural generalization is to allow pairings
between any two items; this is the so-called stable roommates problem. (We give a
formal definition in Sec. 3.) While any instance of the stable marriage problem has
a solution,11 not all instances of the stable roommates problem do. Irving13 was
the first to give a polynomial-time algorithm to test whether a stable roommates
problem instance has a solution. Later, Tan14 and Tan and Hsueh15 gave another
algorithm for this problem, which also provided much insight into the structure of
solutions. We will review their main results (and use them to prove the existence of
a solution in our special case) in Sec. 3.

2. Weighted Straight Skeletons

In this section, we clarify the details of the definition of the weighted straight
skeleton, events, and how to create a new pairing of edges after such an event.
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2.1. The wavefront

Let P denote a polygon, possibly with holes. We denote by σ(e) ∈ R\{0} the weight
of the edge e of P and call σ the weight function.a For every edge e of P , let n(e)
denote the normal vector of e that points to the interior of P . Initially, every edge
of P sends out a wavefront edge with fixed speed σ(e). That is, the segments of the
wavefront W(t) at time t that originate from edge e are contained in e+t·σ(e)·n(e),
where e denotes the supporting line of e. If σ(e) is negative, the wavefront edge that
emanated from e moves to the exterior of P .

2.2. Events, pairings, and some examples

Intuitively, an event happens when a wavefront vertex meets another wavefront edge
or, in particular, another wavefront vertex. For unweighted straight skeletons (i.e.,
with all weights set to 1) the wavefront is planar between events. Here “planar”
means that its edges do not intersect except at common endpoints. We can interpret
events as the incidences where planarity is violated. To restore planarity, we must
change the pairing of edges, i.e., which of the edges that are involved in the event are
made to be consecutive in the polygons that constitute the wavefront after the event.
For unweighted straight skeletons, we can always restore planarity by considering
the cyclic order of wavefront edges meeting at p and by pairing each edge with the
cyclically neighboring edge, see Fig. 2. We call this the standard pairing technique.

The situation becomes more complicated for the weighted straight skeleton,
especially when two or more such events are co-located at the same time t. We give
a few examples that demonstrate the difficulties:

• For the polygon in Fig. 3, the standard pairing yields a crossing after the event.
• For the polygon in Fig. 4, there exist multiple pairings of edges that lead to a

planar wavefront after the event.

p

Fig. 2. A wavefront before (dotted), at (solid), and after an event (bold), with blue arrows
showing movement direction of wavefront vertices. The standard pairing technique for handling a
split event pairs each edge with its neighbor in the cyclic order with which it was not paired before
(color online).

aAs in Biedl et al.10 we exclude weight 0, because it leads to complications in the definition of
skeleton via the wavefront. If one used an alternate definition via the roof model, a weight of 0
could be permitted.
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(a) (b) (c)

Fig. 3. (a) Two vertices move towards an event location. The immediate area of interest is shown
within the green ball while the wavefront polygon outside is sketched only. At the event time,
the supporting line depicted as a gray dashed line overtakes the left wavefront vertex. (b) Using

the standard pairing to update the wavefront at an event can yield a non-planar wavefront. (c)
Instead, the original pairing has to be preserved in this particular instance. (In both (b) and (c)
the pre-event wavefront is shown dotted and in gray for reference.) (color online).

(a) (b) (c) (d)

Fig. 4. Three vertices meet at an event (a), requiring a reconfiguration of the wavefront as
planarity gets violated (b). There are multiple ways to restore planarity (c–d). Also the number of
components of the post-event wavefront differs. (Again, the pre-event wavefront is shown dotted
in the post-event figures.)

• For the polygon in Fig. 5, no pairing of edges exists such that the wavefront after
the event is (strictly) planar.

This last example is the most troublesome since for the unweighted straight skeleton
the main principle had been that the wavefront is planar between events, and this
example shows that for weighted straight skeletons this is impossible to achieve.
Because of its importance, we therefore argue the correctness of this example in
more detail.

Lemma 1. The weighted straight-skeleton wavefront propagation process of certain
inputs will result in a non-planar wavefront. No pairing of wavefront edges is able
to restore planarity.

Proof. In Fig. 5 two vertices meet simultaneously at a point. By construction, one
vertex lies on the supporting line of an edge that is incident to the other vertex at all
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(a) (b) (c)

Fig. 5. (a) Two wavefront vertices meet at a point. One vertex is at all times on the supporting
line (dotted) of another vertex’s edge. There are two possibilities, (b) and (c), to pair up the edges
such that the wavefront remains planar in a weak sense, but not in a strict sense. (The pairing is

highlighted using bold orange lines.) (color online).

times. We have three combinatorial possibilities to pair up the wavefront edges. One
of them leads to a crossing. The other two possibilities are illustrated in Figs. 5(b)
and 5(c). Both remaining possibilities are not (strictly) planar because some edge
contains the point of a non-incident edge.

While in the above example (Lemma 1) the wavefront is not planar in a strict
sense, there are no crossings — instead, edges only touch.

2.3. Weak planarity and the fundamental principle

Let P and Q denote two drawings (i.e., continuous maps) of a graph H = (V, E)
into the plane. Define the Fréchet-distance dF(P, Q) to be infΦ:H→H maxx∈H ×
d(P (Φ(x)), Q(x))}, where Φ is an automorphism of H and d(·, ·) denotes the stan-
dard Euclidean distance. See Sec. D.2 of Chang et al.16 for more details.

Define a drawing P of H to be weakly planar if, for any ε > 0, there exists a
drawing Q of H that is planar (i.e., injective) such that dF (P, Q) < ε.b

This definition implies that every planar drawing is weakly planar as well. In
addition, for every weakly planar drawing P and for every ε > 0, the corresponding
planar drawing Q in particular satisfies for all vertices v that dF (Q(v), P (v)) < ε.
This definition now enables us to rephrase the fundamental principle as follows:

The wavefront is a collection of polygons that is weakly planar at all times.

2.4. Formal definition of events

The wavefront W is initially planar and therefore also weakly planar. Informally,
an event occurs when the wavefront is about to cease being weakly planar and
event handling needs to restructure the wavefront locally such that it can continue
propagating in a weakly planar fashion.

bChang et al. used “weakly simple”, but we prefer the term “weakly planar” as to not use the two
terms “simple drawings” and “simple graphs” for entirely unrelated concepts.
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Assume that W(t′) is weakly planar for all t′ ∈ [t− δ, t] and some δ > 0. For this
time interval, we can consider W to be a kinetic planar straight-line graph with a
fixed set of kinetic vertices and edges. For Definition 1, we fix the vertex set and the
edge set of W , including the velocities of the vertices and temporarily ignore event
handling. Furthermore, we denote by B(p, r) the closed disk of radius r centered at
p. By W(t′) ∩ B(p, r) we mean the planar straight-line graph W(t′) with all edges
truncated to fit into B(p, r) or removed if they entirely reside outside B(p, r).

Definition 1. Given a location p and a time t, we say that an event happens if
at least two vertices meet for the first time at time t at p, or if ∃ε0 > 0 ∀ ε ∈
(0, ε0) ∃δ > 0 such that

(i) W(t′) ∩ B(p, ε) is non-empty and weakly planar for t′ ∈ [t − δ, t] and
(ii) W(t′) ∩ B(p, ε) is non-empty and not weakly planar for t′ ∈ (t, t + δ].

We say that the edges that meet in p at time t are involved in the event.

As this definition defines events localized at some point p, we can also talk
about multiple events occurring at the same time t at different locations. If an
event happens at location p and time t then, typically, weak planarity of W is
violated locally around p after time t. However, weak planarity is not violated if, for
instance, a wavefront polygon collapses to a point. Figure 5 gives another example
where weak planarity is not violated after the event. The goal of event handling
is to guarantee that weak planarity holds after the event, by locally adapting the
wavefront structure if needed.

Definition 2. We call the event at location p and time t elementary if exactly
three edges are involved. We call it an edge event if B(p, ε)\W(t− δ) consists of two
connected components and a split event otherwise. Non-elementary edge and split
events are called multi-edge and multi-split events respectively.

It is known how to handle edge events and elementary split events.10 In the
following, we present one unified approach that is able to correctly handle any type
of event, including, in particular, multi-split events. Consequently, one side effect
of our definition of weighted straight skeletons is that the distinction between edge
events and split events becomes unnecessary.

2.5. Global and local weak planarity

The definition of weak planarity is global, i.e., considers the entire wavefront. In
contrast, the definition of event considers only local weak planarity, i.e., the wave-
front within a ball B(p, ε) around point p. Unlike (strict) planarity, weak planarity
can be violated globally while still holding everywhere locally, see Fig. 6(d). In
fact, a (globally) weakly planar graph can be continuously deformed into a non-
weakly-planar graph without vertices meeting and without local weak planarity
being violated anywhere at any time, see Fig. 6.
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(a) (b) (c) (d)

Fig. 6. The continuous deformation of the dotted (blue) polygon causes a strictly planar graph
(a) to become not globally weakly planar (color online).

However, as we show now, in the special case of a wavefront propagation, a
non-weakly-planar wavefront cannot be obtained from a weakly planar wavefront
without causing an event. To show this, fix some time interval [t, t′] in which no
event occurs, and assume W(t) was weakly planar. To show that W(t′) is weakly
planar, we must find for any ε′ > 0 a planar drawing Q′ that has Fréchet distance
at most ε′ from W(t′). Let 0 < ε ≤ ε′ be sufficiently small (we determine bounds
for it later) and let Q be a planar drawing with dF (W(t), Q) ≤ ε. The goal is to
transform Q into the desired drawing Q′.

Let v be a vertex, say it is at p in W(t) and at p′ in W(t′), and consider the
balls B(p, ε1) and B(p′, ε1). Here ε1 is small enough that in both W(t) and W(t′)
any two vertices have distance at least 3ε1 (except for vertices occupying the same
point) and vertex-balls intersect only edges that contain that vertex. The crucial
observation is that B(p, ε1) ∩ W(t) equals B(p′, ε1) ∩ W(t′) after translating by
p − p′. For if, say, edge e intersected B(p′, ε1) in W(t′), but not B(p, ε1) in W(t),
then at some point in time interval [t, t′] vertex v started residing on e. Because
this was not the case at time t, the supporting lines of v and e do not have a
common point throughout, which means that continuing the movement of v results
in a non-planarity, and hence an event, a contradiction. Similarly if some vertex v′

belongs to B(p′, ε1) in W(t′), but not to B(p, ε1) in W(t), then at some point v and
v′ coincided, causing an event.

We can therefore define drawing Q′ inside ball B(p′, ε1) to consist of B(p, ε1)∩Q,
translated by p′ − p. With this, the Fréchet-distance within B(p, ε1) is at most ε.

If we choose ε < ε1, then outside the balls at vertices, drawing Q must remain
near edge-segments (i.e., maximal segments inside edges that have no vertex on
them). It seems intuitive that we can complete Q′ by connecting appropriately
along edge-segments, but to describe this precisely we need a few notations, see also
Fig. 7.

For each edge-segment s define the tube T (s, ε) to be all points of distance at
most ε from s. Further define the core R(s, ε) ⊂ T (s, ε) to be the points in the
tube for which the perpendicular onto s does not intersect the balls placed at the
endpoints of s. This core is a rectangle that has a “shorter” side of length 2ε and a
“longer” side of length |s| − 2ε1 ≥ ε1. Since edge-vertex incidences do not change
in time interval [t, t′], segment s corresponds to a segment s′ in W(t′), which also
has such a tube and core. We assume that ε is small enough that in both W(t) and
W(t′) cores of edge-segments are disjoint unless the edge-segments coincide. (Any
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p

qs

B(p, ε1)

B(1, ε1)
T (s, ε)

R(s, ε)

QEq

Q

(a) (b)

Fig. 7. Balls, tubes and cores. Planar drawing Q′ is obtained by translating Q near vertices and
stretching Q within cores.

two edge-segments either coincide in both W(t) and W(t′) or in neither, else there
would be an event.)

Now define drawing Q′ as follows. Near vertices, we simply translate. Namely, for
any edge-segment s with ends p, q, we have T (s, ε) = Ep∪R(s, ε)∪Eq, where Ep, Eq

are the maximal connected regions outside the core, containing p and q respectively.
Translate Ep ∩ Q by p′ − p and Eq ∩ Q by q′ − q to obtain the parts of Q′ within
the corresponding regions inside the tube of s′. Multiple such regions may intersect
near p, but the translation is the same for all of them, so this is consistent. Within
cores we both translate and scale. Namely, we can obtain R(s′, ε) from R(s, ε) by
translation and scaling the longer side by a factor of (|s′|−2ε1)/(|s|−2ε1) ≤ |s′|/ε1.
Apply the same transformation to R(s, ε) ∩ Q to obtain a drawing that fits inside
R(s′, ε) and intersects the shorter side of R(s′, ε) in exactly the same way that Q

intersected the shorter side of R(s, ε).
Since any point of Q is within distance ε from some point in W(t), drawing

Q resides inside the tubes. Therefore all parts of Q have been transformed into
some part of Q′. The various pieces of Q′ fit together, because at the boundary to
the cores the pieces of Q′ intersect at the same points as Q did. So Q′ is a planar
drawing of the wavefront. Use the same automorphism that defined dF(Q,W(t)) to
define one for Q′ and W(t′), then the Fréchet-distance of Q′ to W(t′) is at most S ·ε,
where S ≤ maxs′ |s′|/ε1 is the maximum scale-factor used for some tube. Choosing
ε < ε′/S therefore shows dF (Q′,W(t′)) ≤ ε′ and we have:

Lemma 2. Weak planarity (in a global sense) cannot get violated during the wave-
front propagation without an event happening.

2.6. Pairing edges and planar matching

Assume an event happens at time t at location p. Up until time t the wavefront W
is weakly planar. In case weak planarity is violated after t, we must transform the
wavefront structure to restore weak planarity. This involves changing the pairing of
wavefront edges.

We reduce the problem of pairing up wavefront edges during event handling to
a particular matching problem, discussed in Sec. 3. This problem, which we study
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independently of straight skeletons, takes a directed pseudo-line arrangement in
general position as input and outputs a matching between the pseudo-lines. The
matching is planar with respect to the so-called “tails”. This provides us with a
means to construct a weakly planar wavefront again. In the following, we describe
how to transform a weakly planar wavefront into a suitable pseudo-line arrangement
for the matching problem.

The pseudo-lines stem from the supporting lines of wavefront edges and are
required to be in general position. By general position we mean that any pair of
lines intersects in exactly one unique point. In particular, this implies that no two
lines are parallel, no two lines are identical, and no three lines intersect in a common
point. Note that it is only the pseudo-line arrangement which is in general position.
The original wavefront is not so restricted and can be in an arbitrary position.

At time t, several edges of the wavefront W are incident at location p. For each
such edge, either zero, one, or both endpoints approach p at time t. We construct
a simplified version of the wavefront, denoted by W ′, as follows. First, we drop any
edge both of whose endpoints reach p. For each such edge we join its two endpoints,
making its two neighbors now neighbors of each other. Furthermore, any edge where
no endpoint reaches p is split into two edges by a new wavefront vertex that also
reaches p at time t. Thus, in W ′ an even number of wavefront edges have exactly one
endpoint at point p at time t, see Fig. 8. All changes have been of a combinatorial
nature, and not changed the geometry of the wavefront at time t, so W ′ is weakly
planar at time t.

We now want to create a set L of directed pseudo-lines that will be the input
to the matching problem, which allows us to create a suitable pairing for the new
wavefront. The idea is to use for any edge e in W ′ the supporting line e at time
t + δ, and to direct it from the end where e intersected the boundary of B(p, ε).
However, L is required to be in general position whereas some supporting lines may
not be. Specifically, the subdivision of edges that reach p results in two edges with
the same supporting line (but directed in opposite directions). Moreover, W ′ may
not have been strictly planar, and there may have been multiple edges with the
same directed supporting line all reaching p.

Fig. 8. A multi-split event occurs at location p. The involved edges form four chains. The sim-
plified wavefront W ′ contains exactly eight edges, shown in bold, stemming from those chains.
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We resolve such overlaps based on a strictly planar drawing Ws that is very
close to W ′(t). Fix a small ν > 0, and let Ws be such that dF(Ws,W ′(t)) < ν. We
can extrapolate Ws to time t + δ as follows: For any edge e in W ′(t), there exists a
curve C(e) in Ws with dF (e, C(e)) < ν. We can translate C(e) by δ · σ(e) · n(e), i.e.,
with the same speed and in the same direction as e. For sufficiently small δ, this
will not result in crossings outside B(p, ε).

Now we explain how to obtain L. We start with the directed supporting lines
of W ′(t + δ), and use in the following �(e) to denote the pseudo-line representing
e. For any edge e involved in the event where no other involved edge has the same
supporting line e, we can use e ∩ B(p, ε) as �(e).

For a set of two or more edges of W ′(t + δ) that all have the same supporting
line e, we do the following in order to arrive at a pseudo-line arrangement in general
position. (Note that all these edges must be moving with the same speed since they
were all incident at p at time t and at time t+δ still share a supporting line.) Prune
e to consider only the part between where it intersects the boundary of B(p, ε), say
this happens at points ps and pt. Let e1, . . . , ek be all edges of W ′(t + δ) that had
supporting line e and contained ps, and let e′1, . . . , e

′
k′ be all edges of W ′(t+ δ) that

had supporting line e and contained pt.
All of e1, . . . , ek were overlapping in W ′(t), and so must be replaced by curves

in Ws. The (translated) curves C(e1), . . . , C(ek) intersect the boundary of B(p, ε)
within distance ν from ps, say this was at points p1, . . . , pk. Similarly let p′1, . . . , p

′
k′

be the points where C(e′1), . . . , C(e′k′) intersect the boundary of B(p, ε). Insert points
q1, . . . , qk just after p′k′ (on the boundary of B(p, ε) in clockwise order), and insert
points q′1, . . . , q′k′ just before p1. Now let �(ei) be the line segment from pi to qi, and
let �(e′i) be the line segment from p′i to q′i. If ν is sufficiently small and we choose
the points qi close enough, then any of the new lines is within distance ν of e, and
intersects all lines of edges not supported by e in the same order as e did. Also none
of the new lines overlap, and, if the points qi are chosen to not trigger degeneracies,
then they all intersect each other in unique points. Repeating this for all groups
of overlapping edges results in a pseudo-line arrangement L in general position as
desired.

We use L as input to the matching algorithm in the next section, and obtain as
output a pairing of the pseudo-lines such that there are no crossings within B(p, ε)
when drawing the tails (see Corollary 1 in Sec. 3.3). If �(e) and �(e′) were thus
paired, then we declare the new wavefront W�

ν to be the one where e and e′ share
a common vertex after time t. Note that W�

ν depends on the parameter ν > 0 that
we used to find a planar wavefront Ws approximating W ′(t).

If several multi-split events happen at the same time, then this procedure is
repeated for every such event independently, except that the same strictly-planar
approximation Ws should be used to determine the order of pseudo-lines in all
event-regions.

Lemma 3. There exists a post-event wavefront W� that is weakly planar.
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Proof. For any ν > 0, let W�
ν be a post-event-wavefront constructed if we fix this

value ν. This post-event-wavefront is not necessarily unique, and we cannot exclude
that for different values of ν, the different post-event-wavefronts W�

ν might have
different combinatorics also. However, there is only a finite number of pairings of
event-edges, and so a finite number of possible post-event-wavefronts. Therefore,
in the infinite sequence (W�

ν )ν→0 of post-event wavefronts, there exists an infinite
subsequence such that the post-event wavefront all have the same combinatorics.
We set W� to be that post-event wavefront.

To show that W� is weakly planar, fix an ε > 0. There exists some ν ≤ ε

that belongs to the subsequence, i.e., W�
ν = W�. Construct a drawing W ν that

approximates W� as follows: Inside ball B(p, ε), draw edge e along �(e) as dictated
by the pairing; this gives no crossing and is within distance ν of e by construction
of �(e). Outside ball B(p, ε), use the (translated) curve C(e) for e; this again has no
crossing and is within distance ν of e. These two curves meet exactly at the boundary
of B(p, ε), yielding a single curve to represent e. Thus dF (Wν ,W�) < ν ≤ ε as
desired.

3. Matchings and Roommates

We now turn to the problem of finding a matching between pseudo-lines such that
the “tails” do not cross. Formally, for an even number N , let L = {�1, . . . , �N}
be an oriented pseudo-line arrangement in general position, i.e., a set of directed
simple curves that begin and end at infinity such that any two curves intersect each
other in a single point and no three curves intersect in the same point. For any two
such pseudo-lines �1, �2, let �1 ∩ �2 denote the point of their intersection. Let C be a
closed simple curve that encloses all intersections of pseudo-lines and that intersects
each (directed) pseudo-line � exactly twice. Walking along the direction of �, let the
begin-point b(�) be the first intersection point of � and C, and let its end-point be
the second intersection point.

A matching M in L is a grouping of �1, . . . , �N into pairs; we use M(�i) to denote
the matching partner of �i. The matching tail of �i is the sub-curve of �i from b(�i)
to �i ∩ M(�i).

b( )M( )

Fig. 9. A directed pseudo-line arrangement. (Left) The matching tail. (Right) A planar matching.



1st Reading

April 12, 2017 8:25 110-IJCGA 1660005

Planar Matchings for Weighted Straight Skeletons 223

Definition 3. A matching in L is called planar if the union of the matching tails
gives a planar drawing.

The planar matching problem is the problem of finding a planar matching M for
a given pseudo-line arrangement L in general position. In the following we translate
the planar matching problem into a stable roommates problem.

3.1. Transformation to the stable roommates problem

We first give the definition of the stable roommates problem. Assume that we have
an even number N of elements A = {a1, . . . , aN}. Each element has a ranking of
elements, which is complete and strict, i.e., all elements are ranked and no two
elements are ranked the same. Let M be a matching of a1, . . . , aN . A pair {ai, aj}
is a blocking pair for M if ai prefers aj over M(ai) and aj prefers ai over M(aj). A
matching is stable if there is no blocking pair. The stable roommates problem asks
for a stable matching in A.

Now let us again consider the directed pseudo-line arrangement L. As we walk
along a pseudo-line �i from its begin-point to its end-point, we encounter all other
pseudo-lines in L. This order naturally gives us a complete and strict ranking for �i

if we attach �i itself to the end of the list. Thus, L defines an instance of the stable
roommates problem.

Lemma 4. A directed pseudo-line arrangement has a planar matching if and only
if the corresponding stable roommates instance has a stable matching.

Proof. For a matching M , the matching tails of two pseudo-lines �i and �j cross
if and only if �i prefers �j over M(�i) and �j prefers �i over M(�j). Hence, the
matching is non-planar if and only if there is a blocking pair.

3.2. Stable partitions

In order to solve our particular stable roommates problem, we review some results
on so-called stable partitions, mostly based on a paper by Tan and Hsueh.15

Let A be an instance of a stable roommates problem, and let π be a permutation
on A, i.e., a bijective map A → A. This map partitions A into one or more cycles,
i.e., sequences a′

0, . . . , a
′
k−1 in A with a′

0
π−→ a′

1
π−→ . . .

π−→ a′
k−1

π−→ a′
0. A cycle with

length k ≥ 3 is called a semi-party cycle if a′
i prefers π(a′

i) over π−1(a′
i) for all i

with 0 ≤ i < k. A semi-party partition of A is a permutation of A where all cycles
of length at least 3 are semi-party cycles.

Given a semi-party partition π, a pair {ai, aj} is called a party-blocking pair if ai

prefers aj over π−1(ai) and aj prefers ai over π−1(aj). A stable partition is a semi-
party partition that has no party-blocking pairs. The cycles of a stable partition are
called parties. An odd (even) party is a party of odd (even) cardinality. Furthermore,
ai, aj are party-partners if ai = π(aj) or aj = π(ai).
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π( ) b( )

π−1( )

Fig. 10. (Left) A stable partition with two pair-parties and one cycle-party of length four. (Right)
The party-tail of pseudo-line � (thick orange line) (color online).

Theorem 1 (Refs. 14 and 15). For any instance A of the stable roommates
problem the following statements hold:

(1) A has a stable partition, and it can be found in polynomial time.
(2) Any stable partition of A has the same number of odd parties.
(3) A has a stable matching if and only if it has a stable partition with no odd

parties.

3.3. Existence of planar matchings

Now we consider parties that occur in stable roommates instances defined by a
directed pseudo-line arrangement L. Theorem 1(1) gives us a stable partition π for
L. Let a singleton-party, a pair-party, and a cycle-party be a party consisting of
one, two, and at least three pseudo-lines, respectively. For each pseudo-line � that
is not in a singleton-party, let its party-tail be the part between b(�) and �∩π−1(�).
For any pseudo-line � that is in a singleton-party, let its party-tail be the part of �

between begin-point and end-point.

Lemma 5. The party-tails of two pseudo-lines � and �′ do not intersect unless �

and �′ are party-partners.

Proof. Assume that � ∩ �′ belongs to both party-tails, but � and �′ are not party-
partners. We first show that � prefers �′ over π−1(�). This holds automatically if
� is in a singleton-party, because then π−1(�) = � and any pseudo-line ranks itself
lowest. If � is not in a singleton-party, then the party-tail of � consists of the sub-
curve between b(�) and � ∩ π−1(�). Since �′ 
= π−1(�) by assumption, and since no
three pseudo-lines intersect in a point, � ∩ �′ comes strictly earlier than � ∩ π−1(�)
when walking along �. By definition of the ranking for directed pseudo-lines, hence
� prefers �′ over π−1(�).

Similarly one shows that �′ prefers � over π−1(�′). Hence, {�, �′} is a party-
blocking pair and π is not a stable partition, a contradiction.

Lemma 6. There cannot be two singleton-parties.
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Proof. Assume that P and P ′ are two singleton-parties, with P = {�} and P ′ =
{�′}. Since � and �′ are in singleton-parties, their party-tails extend from their begin-
points to their end-points. Since all pseudo-lines intersect within C, so do � and �′.
But � and �′ are not party-partners, in contradiction to Lemma. 5.

Lemma 7. There cannot be two cycle-parties.

Proof. Assume we have two cycle-parties P1 = {�0, �1, . . . , �a−1} and P2 =
{�′0, �′1, . . . , �′b−1}, with π(�i) = �i+1, addition modulo a, and π(�′i) = �′i+1 with
addition modulo b.

Let G(P1) be the graph formed by the party tails of P1 as follows: The vertex
set comprises b(�) and �∩π(�) for every pseudo-line � in P1. We add each party-tail
as two edges (b(�), � ∩ π(�)) and (� ∩ π(�), π−1(�) ∩ �), see Fig. 11.

Note that G(P1) has the following structure: It consists of a cycle C1 of edges of
the form (� ∩ π(�), π−1(�) ∩ �), where � ∈ {�0, . . . , �a−1}, and a set of edges of the
form (b(�), � ∩ π(�)) each of which is attached to one vertex of C1. By Lemma. 5,
G(P1) is planar, and we consider it to have the fixed planar embedding and faces
inherited from L. Note that the vertices b(�0), b(�1), . . . , b(�a−1) all lie on the simple
closed curve C and are ordered clockwise or counterclockwise by planarity. Therefore,
G(P1) tessellates the area enclosed by C into a + 1 regions. Note that exactly a of
those regions are partially bounded by C. The remaining region is the one bounded
by C1. Similarly, we define G(P2) and C2.

Again by Lemma 5, G(P1)∪G(P2) is planar, and it follows that G(P2) is entirely
contained in one region of G(P1). This region is not the region bounded by C1 since
it must contain points on C. We denote by R1 the union of all regions of G(P1) that
do not contain G(P2). Likewise, we denote by R2 the union of all regions of G(P2)
that do not contain G(P1). We observe that R1 and R2 are disjoint.

Fig. 11. The two pseudo-lines �0 and �′0 cannot intersect.
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Without loss of generality, the boundary of R1 consists of parts of C as well as
the path b(�1), �1∩�2, �0∩�1, b(�0). Likewise, R2 is bounded by parts of C and edges
stemming from �′1 and �′0.

In the following, we will show that �0 cannot intersect R2, and, conversely, �′0
cannot intersect R1. Consequently, �0 does not intersect �′0 within C, which is a
contraction as we require each pair of pseudo-lines to intersect exactly once in the
area enclosed by C. This concludes the proof.

Note that �0 starts at b(�0), then makes up parts of the boundary of R1 until it
reaches �0 ∩ �1. Then, �0 moves into the interior of R1 as it makes up an edge of C1,
but not the one that is part of the boundary of R1. Once �0 enters R1, it can leave
only by intersecting C at its end-point as it is not allowed to self-intersect or to
intersect �1 a second time. After �0 has left the area enclosed by C, it cannot enter
again, as it intersects C exactly twice. So �0 cannot intersect R2. Likewise, �′0 will
exit the area enclosed by C through its end-point in R2 and cannot intersect R1.

Lemma 8. There cannot be a singleton-party and a cycle-party.

Proof. We follow the same idea as in the previous proof, and use P1 as the cycle-
party and P2 as the singleton-party. Let �0 be defined as previously, and use �′0 as
the single line in P2. Since the tail of �′0 consists of all points between the begin-point
and the end-point of �′0, again no intersection between �0 and �′0 is possible.

Theorem 2. No instance of a stable roommates problem defined by a directed
pseudo-line arrangement L can have a stable partition with an odd party.

Proof. Assume to the contrary that some stable partition π has an odd party P .
As L comprises an even number of pseudo-lines, there needs to be another odd party
P ′. This can only happen if there are two singleton-parties, two (odd) cycle parties,
or a singleton-party and an (odd) cycle-party. These are ruled out by Lemma 6,
Lemma 7, and Lemma 8, respectively.

Theorem 3. Every directed pseudo-line arrangement has a planar matching, and
it can be found in polynomial time.

Proof. This is a direct result of Lemma 4, Theorems 1 and 2.
By Theorem 1 we can find a stable partition in polynomial time. By Theorem 2

and Lemma 7, it consists of pair-parties, except for at most one cycle-party P that
has even length. If there is no cycle-party, then the stable partition is in fact a stable
matching. Otherwise, if say �1, . . . , �a is the even cycle-party, then we can find a
stable matching M easily, and there are two choices: Either set M(�2i) = π(�2i) and
M(�2i+1) = π−1(�2i+1), or do the same after shifting all indices by one.
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3.4. Application to straight skeletons

The matching tails of the pseudo-lines play the role of wavefront edges after the
event. Therefore any planar matching tells us how to pair up the wavefront edges
in order to restore planarity locally at p.

Corollary 1. There exists a weakly planar wavefront after the event if there is a
planar matching for L.

Using Theorem 3, we have found a stable matching and with it a weakly planar
post-event wavefront, in polynomial time.

3.5. Ambiguities in the wavefronts

Notice that if a cycle-party exists, then there are two possible post-event wavefronts
to be obtained from this stable partition. Even worse, a directed pseudo-line arrange-
ment may have many stable partitions and hence there might be many possible
post-event wavefronts. Figure 12 shows an example of a directed line arrangement

Fig. 12. An arrangement of N = 4k directed lines. For any 0 ≤ i ≤ k, we can find a planar
matching by pairing Sj − Wj and Nj − Ej for j ≤ i and Sj − Ej and Nj − Wj for j > i. Shown
here are the matchings obtained for i = 3 and i = 7.

(a) (b) (c)

Fig. 13. A wavefront consisting of six chains approaching an event location (a). There are four
possible pairings after the event, two are shown in (b) and (c). Extending this example to 2 · k
chains allows for k + 1 possible after-event wavefront configurations.
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Fig. 14. If Ω(n) vertices move on a line towards Ω(n) other vertices, then there could be Ω(n2)
events.

that has Θ(N) many possible planar matchings. Figure 13 shows an example of a
wavefront where linearly many post-event configurations are possible. Consequently,
ambiguities in the development of the wavefront may be caused not only by edge
events between parallel edges10 but also by multi-split events.

4. Conclusion

Although algorithms and even rudimentary implementations to construct the
weighted straight skeleton have previously been presented, and even though sev-
eral applications are suggested in the literature, this paper is the first to provide
a concrete, constructive proof that a well-defined weighted straight skeleton actu-
ally exists in all cases. This result is based on two main ingredients: First, we have
introduced and studied planar matchings on a directed pseudo-line arrangement as
a generic tool independent of straight skeletons. In particular, we have shown that
planar matchings always exist. Second, our interpretation of an event as a poten-
tial violation of (weak) planarity unifies the classification of edge and split events
in 2D and promises to simplify the description and study of straight skeletons in
dimensions higher than two, where the number of types and complexity of events
would significantly increase otherwise.

The complexity of finding the weighted straight skeleton remains open. Comput-
ing a solution to the stable roommates problem can be done in O(N2) time.13 We
potentially have N ∈ Ω(n) at an event. Even the number of events is not necessarily
small: for unweighted polygons at most n events happen, but for weighted polygons
there could be Ω(n2) events (see Fig. 14). The trivial upper bound is O(n3) events
since three supporting lines of edges must meet and this happens at most

(
n
3

)
times.

Hence we do not claim a running time better than O(n5) if the polygon is not in
general position; surely this could be improved.
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